3.1.82 \(\int \frac {x^2}{(a+b \log (c x^n))^3} \, dx\) [82]

3.1.82.1 Optimal result
3.1.82.2 Mathematica [A] (verified)
3.1.82.3 Rubi [A] (verified)
3.1.82.4 Maple [C] (warning: unable to verify)
3.1.82.5 Fricas [B] (verification not implemented)
3.1.82.6 Sympy [F]
3.1.82.7 Maxima [F]
3.1.82.8 Giac [B] (verification not implemented)
3.1.82.9 Mupad [F(-1)]

3.1.82.1 Optimal result

Integrand size = 16, antiderivative size = 105 \[ \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\frac {9 e^{-\frac {3 a}{b n}} x^3 \left (c x^n\right )^{-3/n} \operatorname {ExpIntegralEi}\left (\frac {3 \left (a+b \log \left (c x^n\right )\right )}{b n}\right )}{2 b^3 n^3}-\frac {x^3}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}-\frac {3 x^3}{2 b^2 n^2 \left (a+b \log \left (c x^n\right )\right )} \]

output
9/2*x^3*Ei(3*(a+b*ln(c*x^n))/b/n)/b^3/exp(3*a/b/n)/n^3/((c*x^n)^(3/n))-1/2 
*x^3/b/n/(a+b*ln(c*x^n))^2-3/2*x^3/b^2/n^2/(a+b*ln(c*x^n))
 
3.1.82.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.85 \[ \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\frac {x^3 \left (9 e^{-\frac {3 a}{b n}} \left (c x^n\right )^{-3/n} \operatorname {ExpIntegralEi}\left (\frac {3 \left (a+b \log \left (c x^n\right )\right )}{b n}\right )-\frac {b n \left (3 a+b n+3 b \log \left (c x^n\right )\right )}{\left (a+b \log \left (c x^n\right )\right )^2}\right )}{2 b^3 n^3} \]

input
Integrate[x^2/(a + b*Log[c*x^n])^3,x]
 
output
(x^3*((9*ExpIntegralEi[(3*(a + b*Log[c*x^n]))/(b*n)])/(E^((3*a)/(b*n))*(c* 
x^n)^(3/n)) - (b*n*(3*a + b*n + 3*b*Log[c*x^n]))/(a + b*Log[c*x^n])^2))/(2 
*b^3*n^3)
 
3.1.82.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.07, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2743, 2743, 2747, 2609}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx\)

\(\Big \downarrow \) 2743

\(\displaystyle \frac {3 \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^2}dx}{2 b n}-\frac {x^3}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}\)

\(\Big \downarrow \) 2743

\(\displaystyle \frac {3 \left (\frac {3 \int \frac {x^2}{a+b \log \left (c x^n\right )}dx}{b n}-\frac {x^3}{b n \left (a+b \log \left (c x^n\right )\right )}\right )}{2 b n}-\frac {x^3}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}\)

\(\Big \downarrow \) 2747

\(\displaystyle \frac {3 \left (\frac {3 x^3 \left (c x^n\right )^{-3/n} \int \frac {\left (c x^n\right )^{3/n}}{a+b \log \left (c x^n\right )}d\log \left (c x^n\right )}{b n^2}-\frac {x^3}{b n \left (a+b \log \left (c x^n\right )\right )}\right )}{2 b n}-\frac {x^3}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}\)

\(\Big \downarrow \) 2609

\(\displaystyle \frac {3 \left (\frac {3 x^3 e^{-\frac {3 a}{b n}} \left (c x^n\right )^{-3/n} \operatorname {ExpIntegralEi}\left (\frac {3 \left (a+b \log \left (c x^n\right )\right )}{b n}\right )}{b^2 n^2}-\frac {x^3}{b n \left (a+b \log \left (c x^n\right )\right )}\right )}{2 b n}-\frac {x^3}{2 b n \left (a+b \log \left (c x^n\right )\right )^2}\)

input
Int[x^2/(a + b*Log[c*x^n])^3,x]
 
output
-1/2*x^3/(b*n*(a + b*Log[c*x^n])^2) + (3*((3*x^3*ExpIntegralEi[(3*(a + b*L 
og[c*x^n]))/(b*n)])/(b^2*E^((3*a)/(b*n))*n^2*(c*x^n)^(3/n)) - x^3/(b*n*(a 
+ b*Log[c*x^n]))))/(2*b*n)
 

3.1.82.3.1 Defintions of rubi rules used

rule 2609
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Si 
mp[(F^(g*(e - c*(f/d)))/d)*ExpIntegralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; F 
reeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]
 

rule 2743
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol 
] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^n])^(p + 1)/(b*d*n*(p + 1))), x] - 
Simp[(m + 1)/(b*n*(p + 1))   Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x], x] 
 /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
 

rule 2747
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol 
] :> Simp[(d*x)^(m + 1)/(d*n*(c*x^n)^((m + 1)/n))   Subst[Int[E^(((m + 1)/n 
)*x)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}, x]
 
3.1.82.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.36 (sec) , antiderivative size = 477, normalized size of antiderivative = 4.54

method result size
risch \(-\frac {2 b n \,x^{3}-3 i \pi b \,x^{3} \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+3 i \pi b \,x^{3} \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+3 i \pi b \,x^{3} \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-3 i \pi b \,x^{3} \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+6 \ln \left (c \right ) b \,x^{3}+6 b \,x^{3} \ln \left (x^{n}\right )+6 x^{3} a}{{\left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 \ln \left (x^{n}\right ) b +2 a \right )}^{2} b^{2} n^{2}}-\frac {9 x^{3} c^{-\frac {3}{n}} \left (x^{n}\right )^{-\frac {3}{n}} {\mathrm e}^{-\frac {3 \left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 a \right )}{2 b n}} \operatorname {Ei}_{1}\left (-3 \ln \left (x \right )-\frac {3 \left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 b \left (\ln \left (x^{n}\right )-n \ln \left (x \right )\right )+2 a \right )}{2 b n}\right )}{2 b^{3} n^{3}}\) \(477\)

input
int(x^2/(a+b*ln(c*x^n))^3,x,method=_RETURNVERBOSE)
 
output
-(2*b*n*x^3-3*I*Pi*b*x^3*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+3*I*Pi*b*x^3* 
csgn(I*c)*csgn(I*c*x^n)^2+3*I*Pi*b*x^3*csgn(I*x^n)*csgn(I*c*x^n)^2-3*I*Pi* 
b*x^3*csgn(I*c*x^n)^3+6*ln(c)*b*x^3+6*b*x^3*ln(x^n)+6*x^3*a)/(-I*b*Pi*csgn 
(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*cs 
gn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*ln(x^n)*b+2*a 
)^2/b^2/n^2-9/2/b^3/n^3*x^3*c^(-3/n)*(x^n)^(-3/n)*exp(-3/2*(-I*b*Pi*csgn(I 
*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn 
(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*a)/b/n)*Ei(1,-3*ln(x)-3/2 
*(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^ 
n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2 
*b*(ln(x^n)-n*ln(x))+2*a)/b/n)
 
3.1.82.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 211 vs. \(2 (100) = 200\).

Time = 0.30 (sec) , antiderivative size = 211, normalized size of antiderivative = 2.01 \[ \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=-\frac {{\left ({\left (3 \, b^{2} n^{2} x^{3} \log \left (x\right ) + 3 \, b^{2} n x^{3} \log \left (c\right ) + {\left (b^{2} n^{2} + 3 \, a b n\right )} x^{3}\right )} e^{\left (\frac {3 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )} - 9 \, {\left (b^{2} n^{2} \log \left (x\right )^{2} + b^{2} \log \left (c\right )^{2} + 2 \, a b \log \left (c\right ) + a^{2} + 2 \, {\left (b^{2} n \log \left (c\right ) + a b n\right )} \log \left (x\right )\right )} \operatorname {log\_integral}\left (x^{3} e^{\left (\frac {3 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )}\right )\right )} e^{\left (-\frac {3 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )}}{2 \, {\left (b^{5} n^{5} \log \left (x\right )^{2} + b^{5} n^{3} \log \left (c\right )^{2} + 2 \, a b^{4} n^{3} \log \left (c\right ) + a^{2} b^{3} n^{3} + 2 \, {\left (b^{5} n^{4} \log \left (c\right ) + a b^{4} n^{4}\right )} \log \left (x\right )\right )}} \]

input
integrate(x^2/(a+b*log(c*x^n))^3,x, algorithm="fricas")
 
output
-1/2*((3*b^2*n^2*x^3*log(x) + 3*b^2*n*x^3*log(c) + (b^2*n^2 + 3*a*b*n)*x^3 
)*e^(3*(b*log(c) + a)/(b*n)) - 9*(b^2*n^2*log(x)^2 + b^2*log(c)^2 + 2*a*b* 
log(c) + a^2 + 2*(b^2*n*log(c) + a*b*n)*log(x))*log_integral(x^3*e^(3*(b*l 
og(c) + a)/(b*n))))*e^(-3*(b*log(c) + a)/(b*n))/(b^5*n^5*log(x)^2 + b^5*n^ 
3*log(c)^2 + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3 + 2*(b^5*n^4*log(c) + a*b^4* 
n^4)*log(x))
 
3.1.82.6 Sympy [F]

\[ \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int \frac {x^{2}}{\left (a + b \log {\left (c x^{n} \right )}\right )^{3}}\, dx \]

input
integrate(x**2/(a+b*ln(c*x**n))**3,x)
 
output
Integral(x**2/(a + b*log(c*x**n))**3, x)
 
3.1.82.7 Maxima [F]

\[ \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int { \frac {x^{2}}{{\left (b \log \left (c x^{n}\right ) + a\right )}^{3}} \,d x } \]

input
integrate(x^2/(a+b*log(c*x^n))^3,x, algorithm="maxima")
 
output
-1/2*(3*b*x^3*log(x^n) + (b*(n + 3*log(c)) + 3*a)*x^3)/(b^4*n^2*log(c)^2 + 
 b^4*n^2*log(x^n)^2 + 2*a*b^3*n^2*log(c) + a^2*b^2*n^2 + 2*(b^4*n^2*log(c) 
 + a*b^3*n^2)*log(x^n)) + 9*integrate(1/2*x^2/(b^3*n^2*log(c) + b^3*n^2*lo 
g(x^n) + a*b^2*n^2), x)
 
3.1.82.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1029 vs. \(2 (100) = 200\).

Time = 0.36 (sec) , antiderivative size = 1029, normalized size of antiderivative = 9.80 \[ \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\text {Too large to display} \]

input
integrate(x^2/(a+b*log(c*x^n))^3,x, algorithm="giac")
 
output
-3/2*b^2*n^2*x^3*log(x)/(b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5* 
n^3*log(c)^2 + 2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3) - 1/ 
2*b^2*n^2*x^3/(b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c) 
^2 + 2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3) - 3/2*b^2*n*x^ 
3*log(c)/(b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 + 
2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3) + 9/2*b^2*n^2*Ei(3* 
log(c)/n + 3*a/(b*n) + 3*log(x))*e^(-3*a/(b*n))*log(x)^2/((b^5*n^5*log(x)^ 
2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 + 2*a*b^4*n^4*log(x) + 2*a* 
b^4*n^3*log(c) + a^2*b^3*n^3)*c^(3/n)) - 3/2*a*b*n*x^3/(b^5*n^5*log(x)^2 + 
 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 + 2*a*b^4*n^4*log(x) + 2*a*b^4 
*n^3*log(c) + a^2*b^3*n^3) + 9*b^2*n*Ei(3*log(c)/n + 3*a/(b*n) + 3*log(x)) 
*e^(-3*a/(b*n))*log(c)*log(x)/((b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) 
 + b^5*n^3*log(c)^2 + 2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^ 
3)*c^(3/n)) + 9/2*b^2*Ei(3*log(c)/n + 3*a/(b*n) + 3*log(x))*e^(-3*a/(b*n)) 
*log(c)^2/((b^5*n^5*log(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 
+ 2*a*b^4*n^4*log(x) + 2*a*b^4*n^3*log(c) + a^2*b^3*n^3)*c^(3/n)) + 9*a*b* 
n*Ei(3*log(c)/n + 3*a/(b*n) + 3*log(x))*e^(-3*a/(b*n))*log(x)/((b^5*n^5*lo 
g(x)^2 + 2*b^5*n^4*log(c)*log(x) + b^5*n^3*log(c)^2 + 2*a*b^4*n^4*log(x) + 
 2*a*b^4*n^3*log(c) + a^2*b^3*n^3)*c^(3/n)) + 9*a*b*Ei(3*log(c)/n + 3*a/(b 
*n) + 3*log(x))*e^(-3*a/(b*n))*log(c)/((b^5*n^5*log(x)^2 + 2*b^5*n^4*lo...
 
3.1.82.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int \frac {x^2}{{\left (a+b\,\ln \left (c\,x^n\right )\right )}^3} \,d x \]

input
int(x^2/(a + b*log(c*x^n))^3,x)
 
output
int(x^2/(a + b*log(c*x^n))^3, x)